#!/usr/bin/env python # -*- coding:utf-8 -*- ''' Created on Oct 19, 2010 Update on 2017-05-18 Author: Peter Harrington/羊三/小瑶 GitHub: https://github.com/apachecn/AiLearning ''' from __future__ import print_function from numpy import * """ p(xy)=p(x|y)p(y)=p(y|x)p(x) p(x|y)=p(y|x)p(x)/p(y) """ # 项目案例1: 屏蔽社区留言板的侮辱性言论 def loadDataSet(): """ 创建数据集 :return: 单词列表postingList, 所属类别classVec """ postingList = [['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'], #[0,0,1,1,1......] ['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'], ['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'], ['stop', 'posting', 'stupid', 'worthless', 'garbage'], ['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'], ['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']] classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 not return postingList, classVec def createVocabList(dataSet): """ 获取所有单词的集合 :param dataSet: 数据集 :return: 所有单词的集合(即不含重复元素的单词列表) """ vocabSet = set([]) # create empty set for document in dataSet: # 操作符 | 用于求两个集合的并集 vocabSet = vocabSet | set(document) # union of the two sets return list(vocabSet) def setOfWords2Vec(vocabList, inputSet): """ 遍历查看该单词是否出现,出现该单词则将该单词置1 :param vocabList: 所有单词集合列表 :param inputSet: 输入数据集 :return: 匹配列表[0,1,0,1...],其中 1与0 表示词汇表中的单词是否出现在输入的数据集中 """ # 创建一个和词汇表等长的向量,并将其元素都设置为0 returnVec = [0] * len(vocabList)# [0,0......] # 遍历文档中的所有单词,如果出现了词汇表中的单词,则将输出的文档向量中的对应值设为1 for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] = 1 else: print("the word: %s is not in my Vocabulary!" % word) return returnVec def _trainNB0(trainMatrix, trainCategory): """ 训练数据原版 :param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...] :param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵 :return: """ # 文件数 numTrainDocs = len(trainMatrix) # 单词数 numWords = len(trainMatrix[0]) # 侮辱性文件的出现概率,即trainCategory中所有的1的个数, # 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率 pAbusive = sum(trainCategory) / float(numTrainDocs) # 构造单词出现次数列表 p0Num = zeros(numWords) # [0,0,0,.....] p1Num = zeros(numWords) # [0,0,0,.....] # 整个数据集单词出现总数 p0Denom = 0.0 p1Denom = 0.0 for i in range(numTrainDocs): # 遍历所有的文件,如果是侮辱性文件,就计算此侮辱性文件中出现的侮辱性单词的个数 if trainCategory[i] == 1: p1Num += trainMatrix[i] #[0,1,1,....]->[0,1,1,...] p1Denom += sum(trainMatrix[i]) else: # 如果不是侮辱性文件,则计算非侮辱性文件中出现的侮辱性单词的个数 p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) # 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表 # 即 在1类别下,每个单词出现次数的占比 p1Vect = p1Num / p1Denom# [1,2,3,5]/90->[1/90,...] # 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表 # 即 在0类别下,每个单词出现次数的占比 p0Vect = p0Num / p0Denom return p0Vect, p1Vect, pAbusive def trainNB0(trainMatrix, trainCategory): """ 训练数据优化版本 :param trainMatrix: 文件单词矩阵 :param trainCategory: 文件对应的类别 :return: """ # 总文件数 numTrainDocs = len(trainMatrix) # 总单词数 numWords = len(trainMatrix[0]) # 侮辱性文件的出现概率 pAbusive = sum(trainCategory) / float(numTrainDocs) # 构造单词出现次数列表 # p0Num 正常的统计 # p1Num 侮辱的统计 # 避免单词列表中的任何一个单词为0,而导致最后的乘积为0,所以将每个单词的出现次数初始化为 1 p0Num = ones(numWords)#[0,0......]->[1,1,1,1,1.....] p1Num = ones(numWords) # 整个数据集单词出现总数,2.0根据样本/实际调查结果调整分母的值(2主要是避免分母为0,当然值可以调整) # p0Denom 正常的统计 # p1Denom 侮辱的统计 p0Denom = 2.0 p1Denom = 2.0 for i in range(numTrainDocs): if trainCategory[i] == 1: # 累加辱骂词的频次 p1Num += trainMatrix[i] # 对每篇文章的辱骂的频次 进行统计汇总 p1Denom += sum(trainMatrix[i]) else: p0Num += trainMatrix[i] p0Denom += sum(trainMatrix[i]) # 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表 p1Vect = log(p1Num / p1Denom) # 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表 p0Vect = log(p0Num / p0Denom) return p0Vect, p1Vect, pAbusive def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1): """ 使用算法: # 将乘法转换为加法 乘法: P(C|F1F2...Fn) = P(F1F2...Fn|C)P(C)/P(F1F2...Fn) 加法: P(F1|C)*P(F2|C)....P(Fn|C)P(C) -> log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C)) :param vec2Classify: 待测数据[0,1,1,1,1...],即要分类的向量 :param p0Vec: 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表 :param p1Vec: 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表 :param pClass1: 类别1,侮辱性文件的出现概率 :return: 类别1 or 0 """ # 计算公式 log(P(F1|C))+log(P(F2|C))+....+log(P(Fn|C))+log(P(C)) # 使用 NumPy 数组来计算两个向量相乘的结果,这里的相乘是指对应元素相乘,即先将两个向量中的第一个元素相乘,然后将第2个元素相乘,以此类推。 # 我的理解是: 这里的 vec2Classify * p1Vec 的意思就是将每个词与其对应的概率相关联起来 # 可以理解为 1.单词在词汇表中的条件下,文件是good 类别的概率 也可以理解为 2.在整个空间下,文件既在词汇表中又是good类别的概率 p1 = sum(vec2Classify * p1Vec) + log(pClass1) p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1) if p1 > p0: return 1 else: return 0 def bagOfWords2VecMN(vocabList, inputSet): returnVec = [0] * len(vocabList) for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)] += 1 return returnVec def testingNB(): """ 测试朴素贝叶斯算法 """ # 1. 加载数据集 listOPosts, listClasses = loadDataSet() # 2. 创建单词集合 myVocabList = createVocabList(listOPosts) # 3. 计算单词是否出现并创建数据矩阵 trainMat = [] for postinDoc in listOPosts: # 返回m*len(myVocabList)的矩阵, 记录的都是0,1信息 trainMat.append(setOfWords2Vec(myVocabList, postinDoc)) # 4. 训练数据 p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses)) # 5. 测试数据 testEntry = ['love', 'my', 'dalmation'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)) testEntry = ['stupid', 'garbage'] thisDoc = array(setOfWords2Vec(myVocabList, testEntry)) print(testEntry, 'classified as: ', classifyNB(thisDoc, p0V, p1V, pAb)) # ------------------------------------------------------------------------------------------ # 项目案例2: 使用朴素贝叶斯过滤垃圾邮件 # 切分文本 def textParse(bigString): ''' Desc: 接收一个大字符串并将其解析为字符串列表 Args: bigString -- 大字符串 Returns: 去掉少于 2 个字符的字符串,并将所有字符串转换为小写,返回字符串列表 ''' import re # 使用正则表达式来切分句子,其中分隔符是除单词、数字外的任意字符串 listOfTokens = re.split(r'\W*', bigString) return [tok.lower() for tok in listOfTokens if len(tok) > 2] def spamTest(): ''' Desc: 对贝叶斯垃圾邮件分类器进行自动化处理。 Args: none Returns: 对测试集中的每封邮件进行分类,若邮件分类错误,则错误数加 1,最后返回总的错误百分比。 ''' docList = [] classList = [] fullText = [] for i in range(1, 26): # 切分,解析数据,并归类为 1 类别 wordList = textParse(open('data/4.NaiveBayes/email/spam/%d.txt' % i).read()) docList.append(wordList) classList.append(1) # 切分,解析数据,并归类为 0 类别 wordList = textParse(open('data/4.NaiveBayes/email/ham/%d.txt' % i).read()) docList.append(wordList) fullText.extend(wordList) classList.append(0) # 创建词汇表 vocabList = createVocabList(docList) trainingSet = range(50) testSet = [] # 随机取 10 个邮件用来测试 for i in range(10): # random.uniform(x, y) 随机生成一个范围为 x - y 的实数 randIndex = int(random.uniform(0, len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat = [] trainClasses = [] for docIndex in trainingSet: trainMat.append(setOfWords2Vec(vocabList, docList[docIndex])) trainClasses.append(classList[docIndex]) p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses)) errorCount = 0 for docIndex in testSet: wordVector = setOfWords2Vec(vocabList, docList[docIndex]) if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]: errorCount += 1 print('the errorCount is: ', errorCount) print('the testSet length is :', len(testSet)) print('the error rate is :', float(errorCount)/len(testSet)) def testParseTest(): print(textParse(open('data/4.NaiveBayes/email/ham/1.txt').read())) # ----------------------------------------------------------------------------------- # 项目案例3: 使用朴素贝叶斯从个人广告中获取区域倾向 # 将文本文件解析成 词条向量 def setOfWords2VecMN(vocabList,inputSet): returnVec=[0]*len(vocabList) # 创建一个其中所含元素都为0的向量 for word in inputSet: if word in vocabList: returnVec[vocabList.index(word)]+=1 return returnVec #文件解析 def textParse(bigString): import re listOfTokens=re.split(r'\W*', bigString) return [tok.lower() for tok in listOfTokens if len(tok)>2] #RSS源分类器及高频词去除函数 def calcMostFreq(vocabList,fullText): import operator freqDict={} for token in vocabList: #遍历词汇表中的每个词 freqDict[token]=fullText.count(token) #统计每个词在文本中出现的次数 sortedFreq=sorted(freqDict.iteritems(),key=operator.itemgetter(1),reverse=True) #根据每个词出现的次数从高到底对字典进行排序 return sortedFreq[:30] #返回出现次数最高的30个单词 def localWords(feed1,feed0): import feedparser docList=[];classList=[];fullText=[] minLen=min(len(feed1['entries']),len(feed0['entries'])) for i in range(minLen): wordList=textParse(feed1['entries'][i]['summary']) #每次访问一条RSS源 docList.append(wordList) fullText.extend(wordList) classList.append(1) wordList=textParse(feed0['entries'][i]['summary']) docList.append(wordList) fullText.extend(wordList) classList.append(0) vocabList=createVocabList(docList) top30Words=calcMostFreq(vocabList,fullText) for pairW in top30Words: if pairW[0] in vocabList:vocabList.remove(pairW[0]) #去掉出现次数最高的那些词 trainingSet=range(2*minLen);testSet=[] for i in range(20): randIndex=int(random.uniform(0,len(trainingSet))) testSet.append(trainingSet[randIndex]) del(trainingSet[randIndex]) trainMat=[];trainClasses=[] for docIndex in trainingSet: trainMat.append(bagOfWords2VecMN(vocabList,docList[docIndex])) trainClasses.append(classList[docIndex]) p0V,p1V,pSpam=trainNB0(array(trainMat),array(trainClasses)) errorCount=0 for docIndex in testSet: wordVector=bagOfWords2VecMN(vocabList,docList[docIndex]) if classifyNB(array(wordVector),p0V,p1V,pSpam)!=classList[docIndex]: errorCount+=1 print('the error rate is:',float(errorCount)/len(testSet)) return vocabList,p0V,p1V # 最具表征性的词汇显示函数 def getTopWords(ny,sf): import operator vocabList,p0V,p1V=localWords(ny,sf) topNY=[];topSF=[] for i in range(len(p0V)): if p0V[i]>-6.0:topSF.append((vocabList[i],p0V[i])) if p1V[i]>-6.0:topNY.append((vocabList[i],p1V[i])) sortedSF=sorted(topSF,key=lambda pair:pair[1],reverse=True) print("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**") for item in sortedSF: print(item[0]) sortedNY=sorted(topNY,key=lambda pair:pair[1],reverse=True) print("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**") for item in sortedNY: print(item[0]) if __name__ == "__main__": # testingNB() spamTest() # laTest()